论文标题
部分可观测时空混沌系统的无模型预测
Open level lines of a superposition of periodic potentials on a plane
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider here open level lines of potentials resulting from the superposition of two different periodic potentials on the plane. This problem can be considered as a particular case of the Novikov problem on the behavior of open level lines of quasi-periodic potentials on the plane with four quasi-periods. At the same time, the formulation of this problem may have many additional features that arise in important physical systems related to it. Here we will try to give a general description of the emerging picture both in the most general case and in the presence of additional restrictions. The main approach to describing the possible behavior of the open level lines will be based on their division into topologically regular and chaotic level lines.