论文标题

深度神经网络4K内容的盲目视觉质量评估

Deep Neural Network for Blind Visual Quality Assessment of 4K Content

论文作者

Lu, Wei, Sun, Wei, Min, Xiongkuo, Zhu, Wenhan, Zhou, Quan, He, Jun, Wang, Qiyuan, Zhang, Zicheng, Wang, Tao, Zhai, Guangtao

论文摘要

由于空间分辨率的巨大改善,4K内容可以为消费者提供更严肃的视觉体验。但是,由于分辨率扩大和特定的扭曲,现有的盲图质量评估(BIQA)方法不适用于原始和升级的4K内容。在本文中,我们提出了一种针对4K内容的基于深度学习的BIQA模型,一方面可以识别True和pseudo 4K内容,另一方面可以评估其感知的视觉质量。考虑到高空间分辨率可以代表更丰富的高频信息的特征,我们首先提出了基于灰色级别的共同出现矩阵(GLCM)的纹理复杂性度量,以从4K图像中选择三个代表性的图像贴片,从而可以降低计算复杂性,并通过实验质量质量预测非常有效。然后,我们从卷积神经网络(CNN)的中间层中提取不同种类的视觉特征,并将它们集成到质量感知的特征表示中。最后,两个多层感知(MLP)网络可用于将质量感知功能映射到类概率和每个贴片的质量分数中。总体质量指数是通过平均贴片结果汇总获得的。提出的模型通过多任务学习方式进行了培训,我们介绍了一个不确定性原则,以平衡分类和回归任务的损失。实验结果表明,所提出的模型的表现均优于所有4K内容质量评估数据库中的BIQA指标。

The 4K content can deliver a more immersive visual experience to consumers due to the huge improvement of spatial resolution. However, existing blind image quality assessment (BIQA) methods are not suitable for the original and upscaled 4K contents due to the expanded resolution and specific distortions. In this paper, we propose a deep learning-based BIQA model for 4K content, which on one hand can recognize true and pseudo 4K content and on the other hand can evaluate their perceptual visual quality. Considering the characteristic that high spatial resolution can represent more abundant high-frequency information, we first propose a Grey-level Co-occurrence Matrix (GLCM) based texture complexity measure to select three representative image patches from a 4K image, which can reduce the computational complexity and is proven to be very effective for the overall quality prediction through experiments. Then we extract different kinds of visual features from the intermediate layers of the convolutional neural network (CNN) and integrate them into the quality-aware feature representation. Finally, two multilayer perception (MLP) networks are utilized to map the quality-aware features into the class probability and the quality score for each patch respectively. The overall quality index is obtained through the average pooling of patch results. The proposed model is trained through the multi-task learning manner and we introduce an uncertainty principle to balance the losses of the classification and regression tasks. The experimental results show that the proposed model outperforms all compared BIQA metrics on four 4K content quality assessment databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源