论文标题

从多种模式中学习基于注意力的表示,以在知识图中进行关系预测

Learning Attention-based Representations from Multiple Patterns for Relation Prediction in Knowledge Graphs

论文作者

Lourenço, Vítor, Paes, Aline

论文摘要

知识库及其以知识图(kg)形式的表示自然是不完整的。由于科学和工业应用已广泛采用,因此对完成信息的解决方案的需求很高。最近的几项著作通过学习实体和关系的嵌入来应对这一挑战,然后使用它们来预测实体之间的新关系。尽管它们加重了,但大多数方法仅着眼于学习嵌入的当地邻居。结果,他们可能无法通过忽略长期依赖性和实体语义的传播来捕获KGS的上下文信息。在此手稿中,我们提出了MP(来自多种模式的基于注意力的嵌入),这是一种用于学习上下文表示表示的新型模型:(i)通过以下方面通过增强注意力的消息传播方案获取实体的上下文信息,该方案捕捉了实体的本地语义,同时专注于社区的不同方面; (ii)通过利用路径及其之间的关系来捕获语义上下文。我们的经验发现吸引了人们对注意力机制如何改善实体上下文表示的见解,以及结合实体和语义路径环境如何改善实体的一般表示和关系预测。几个大知识图基准的实验结果表明,MP的表现要优于最先进的关系预测方法。

Knowledge bases, and their representations in the form of knowledge graphs (KGs), are naturally incomplete. Since scientific and industrial applications have extensively adopted them, there is a high demand for solutions that complete their information. Several recent works tackle this challenge by learning embeddings for entities and relations, then employing them to predict new relations among the entities. Despite their aggrandizement, most of those methods focus only on the local neighbors of a relation to learn the embeddings. As a result, they may fail to capture the KGs' context information by neglecting long-term dependencies and the propagation of entities' semantics. In this manuscript, we propose ÆMP (Attention-based Embeddings from Multiple Patterns), a novel model for learning contextualized representations by: (i) acquiring entities' context information through an attention-enhanced message-passing scheme, which captures the entities' local semantics while focusing on different aspects of their neighborhood; and (ii) capturing the semantic context, by leveraging the paths and their relationships between entities. Our empirical findings draw insights into how attention mechanisms can improve entities' context representation and how combining entities and semantic path contexts improves the general representation of entities and the relation predictions. Experimental results on several large and small knowledge graph benchmarks show that ÆMP either outperforms or competes with state-of-the-art relation prediction methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源