论文标题
反馈冷却胶气至量子退化
Feedback cooling Bose gases to quantum degeneracy
论文作者
论文摘要
退化的量子气体有助于推进多体量子物理学和基础新兴的精度传感技术。所有最先进的实验都使用蒸发冷却来达到量子退化所需的超低温度,但是蒸发冷却是极其有损的:超过99.9%的气体被丢弃。这种最终粒子数限制限制了成像分辨率,气体寿命和利用宏观量子相干性的应用。在这里,我们表明,可以使用实时反馈将原子质的气体冷却至量子退化,这是一种与蒸发冷却相同的局限性的全新方法。通过新型的量子场模拟和缩放参数,我们证明了初始的低强化热卵气可以通过反馈控制将原子损失低于蒸发冷却的原子损失大大低。发现反馈冷却的优势是可靠的,可用于不完善的检测,控制和测量的有限分辨率,控制环的时间延迟以及自发发射。使用反馈冷却来创建具有高相干性和低熵的退化来源,可以在精确测量,原子能和少量和多体量子物理学方面具有新的功能。
Degenerate quantum gases are instrumental in advancing many-body quantum physics and underpin emerging precision sensing technologies. All state-of-the-art experiments use evaporative cooling to achieve the ultracold temperatures needed for quantum degeneracy, yet evaporative cooling is extremely lossy: more than 99.9% of the gas is discarded. Such final particle number limitations constrain imaging resolution, gas lifetime, and applications leveraging macroscopic quantum coherence. Here we show that atomic Bose gases can be cooled to quantum degeneracy using real-time feedback, an entirely new method that does not suffer the same limitations as evaporative cooling. Through novel quantum-field simulations and scaling arguments, we demonstrate that an initial low-condensate-fraction thermal Bose gas can be cooled to a high-purity Bose-Einstein condensate (BEC) by feedback control, with substantially lower atomic loss than evaporative cooling. Advantages of feedback cooling are found to be robust to imperfect detection, finite resolution of the control and measurement, time delay in the control loop, and spontaneous emission. Using feedback cooling to create degenerate sources with high coherence and low entropy enables new capabilities in precision measurement, atomtronics, and few- and many-body quantum physics.