论文标题
自我监督的学习比监督学习更强大吗?
Is Self-Supervised Learning More Robust Than Supervised Learning?
论文作者
论文摘要
自我监督对比学习是学习无标签的视觉表示的强大工具。先前的工作主要集中于评估各种训练算法的识别精度,但忽略了其他行为方面。除精度外,分布鲁棒性在机器学习模型的可靠性中起着至关重要的作用。我们设计和进行一系列鲁棒性测试,以量化对比度学习与监督学习之间的行为差异,以在下游或训练前数据分布变化。这些测试利用多个级别的数据损坏,范围从像素级伽马失真到补丁级的改组,再到数据集级别的分布变化。我们的测试揭示了对比和监督学习的有趣鲁棒性行为。一方面,在下游腐败下,我们通常会观察到对比学习比监督学习更为强大。另一方面,在训练前的损坏下,我们发现对比度的学习容易受到贴片的改组和像素强度的变化,但对数据集级别的分布变化却不太敏感。我们试图通过数据增强和特征空间属性的作用来解释这些结果。我们的见识在改善监督学习的下游鲁棒性方面具有影响。
Self-supervised contrastive learning is a powerful tool to learn visual representation without labels. Prior work has primarily focused on evaluating the recognition accuracy of various pre-training algorithms, but has overlooked other behavioral aspects. In addition to accuracy, distributional robustness plays a critical role in the reliability of machine learning models. We design and conduct a series of robustness tests to quantify the behavioral differences between contrastive learning and supervised learning to downstream or pre-training data distribution changes. These tests leverage data corruptions at multiple levels, ranging from pixel-level gamma distortion to patch-level shuffling and to dataset-level distribution shift. Our tests unveil intriguing robustness behaviors of contrastive and supervised learning. On the one hand, under downstream corruptions, we generally observe that contrastive learning is surprisingly more robust than supervised learning. On the other hand, under pre-training corruptions, we find contrastive learning vulnerable to patch shuffling and pixel intensity change, yet less sensitive to dataset-level distribution change. We attempt to explain these results through the role of data augmentation and feature space properties. Our insight has implications in improving the downstream robustness of supervised learning.