论文标题
$4π$ -Kink的量子动力学在约瑟夫森连接阵列中,具有大动力电感
Quantum dynamics of a $4π$-kink in Josephson junctions parallel arrays with large kinetic inductances
论文作者
论文摘要
我们介绍了\ textIt {两个}磁通(MFS)的量子动力学的理论研究。两个被困MF的约瑟夫森相分布满足拓扑约束,即沿JJPA的约瑟夫森阶段的总变化为$4π$。在这样的JJPA中,约瑟夫森相分布(MF的“大小”)的特征长度大大减少到小于单个单元格大小。将区分两个极端的动态模式:两个弱相互作用的MF和两个合并的MF,即$4π$ -Kink。考虑到位于同一或相邻单元格的两个MF之间的排斥相互作用,我们获得了能量频谱$ e_ {4π}(p)$的量子$4π$ -kink。 $4π$ -kink的相干量子动力学表明了量子的频率和振幅与两个独立MF观察到的频率和振幅强烈偏离。在存在频率$ f $的应用DC和AC偏置电流的情况下,$4π$ -Kink的弱不一致的量子动力学会导致Bloch振荡和带有值$ i^{(n)} _ {4π} = ENF $的精确电流步骤,而两个独立MF的$两倍。
We present a theoretical study of the quantum dynamics of \textit{two} magnetic fluxons (MFs) trapped in Josephson junction parallel arrays (JJPAs) with large kinetic inductances. The Josephson phase distribution of two trapped MFs satisfies a topological constraint, i.e., a total variation of Josephson phases along a JJPA is $4π$. In such JJPAs the characteristic length of Josephson phase distribution ("the size" of MF) is drastically reduced to be less than a single cell size. Two extreme dynamic patterns will be distinguished: two weakly interacting MFs and two merged MFs, i.e., a $4π$-kink. Taking into account the repulsive interaction between two MFs located in the same or adjacent cells we obtain the energy band spectrum $E_{4π}(p)$ for a quantum $4π$-kink. The coherent quantum dynamics of a $4π$-kink demonstrates the quantum beats with the frequency and amplitude strongly deviating from ones observed for two independent MFs. In the presence of applied dc and ac bias current of frequency $f$ a weakly incoherent quantum dynamics of a $4π$-kink results in the Bloch oscillations and the seminal current steps with values $I^{(n)}_{4π}=enf$ which are two times less than ones for two independent MFs.