论文标题
学习为解释建议进行排名
Learning to Rank Rationales for Explainable Recommendation
论文作者
论文摘要
最先进的建议系统(RS)主要依赖于复杂的深神经网络(DNN)模型结构,这使得很难与RS决策一起提供解释。以前的研究人员已经证明,提供解释以及推荐的项目可以帮助用户做出明智的决策,并提高对无法解释的黑盒系统的信任。在模型无关的解释建议中,系统设计人员部署了一个单独的解释模型来作为决策模型的输入,并生成解释以满足说服力的目标。在这项工作中,我们探讨了对模型不合时宜的建议进行对文本原理(支持证据)进行排名的任务。大多数现有的理由排名算法仅利用理由ID和交互矩阵来构建潜在因子表示;并且文本理由中的语义信息没有有效地学习。我们认为这种设计是次优的,因为文本原理中的重要语义信息可用于更好地介绍用户的偏好和项目功能。看到这个差距,我们提出了一个名为语义增强的贝叶斯个性化解释排名(SE-BPER)的模型,以有效地结合了交互信息和语义信息。 SE-BPER首先使用Transformer模型生成的上下文化嵌入来初始化潜在因子表示,然后通过交互数据优化它们。广泛的实验表明,这种方法可以提高理由的排名性能,同时简化模型训练过程(较少的超参数和更快的收敛速度)。我们得出的结论是,结合语义和交互信息的最佳方法仍然是理由排名的任务。
State-of-the-art recommender system (RS) mostly rely on complex deep neural network (DNN) model structure, which makes it difficult to provide explanations along with RS decisions. Previous researchers have proved that providing explanations along with recommended items can help users make informed decisions and improve their trust towards the uninterpretable blackbox system. In model-agnostic explainable recommendation, system designers deploy a separate explanation model to take as input from the decision model, and generate explanations to meet the goal of persuasiveness. In this work, we explore the task of ranking textual rationales (supporting evidences) for model-agnostic explainable recommendation. Most of existing rationales ranking algorithms only utilize the rationale IDs and interaction matrices to build latent factor representations; and the semantic information within the textual rationales are not learned effectively. We argue that such design is suboptimal as the important semantic information within the textual rationales may be used to better profile user preferences and item features. Seeing this gap, we propose a model named Semantic-Enhanced Bayesian Personalized Explanation Ranking (SE-BPER) to effectively combine the interaction information and semantic information. SE-BPER first initializes the latent factor representations with contextualized embeddings generated by transformer model, then optimizes them with the interaction data. Extensive experiments show that such methodology improves the rationales ranking performance while simplifying the model training process (fewer hyperparameters and faster convergence). We conclude that the optimal way to combine semantic and interaction information remains an open question in the task of rationales ranking.