论文标题

考虑非平衡分子动力学模拟中的界面热电导光谱,考虑到非谐波,非均匀性和量子效应

Interfacial Thermal Conductance Spectrum in Nonequilibrium Molecular Dynamics Simulations Considering Anharmonicity, Non-homogeneity and Quantum Effects

论文作者

Xu, Yixin, Yang, Lina, Zhou, Yanguang

论文摘要

界面热传输对于许多与热相关的应用(例如电子中的热量耗散)至关重要。尽管可以轻松测量或计算总界面热电导(ITC),但仅最近研究了ITC光谱映射,并且尚未完全了解。通过结合非平衡分子动力学模拟和原子绿色的功能方法,我们会系统地研究跨理想界面(即氩气氩界面)的ITC频谱。我们的结果表明,随着激活越来越多的声子和肛门散射通道,ITC频谱随温度逐渐增加,例如,频率大于1 THz的振动可以通过非谐波声子散射通道在2 K(40 K)下在2 K(40 K)下贡献5%(15%)。我们进一步发现,来自左界面哈密顿量的ITC频谱与右界面汉密尔顿的频谱完全不同,这源于由两种界面接触的异族振动特性引起的非谐声散射的不对称性。尽管所有声子都参与了重氩界面的哈密顿量的非谐波散射,但这些参与来自氩界面大麻的Anharmonic语音子散射的声子主要是这些振动的频率小于1 THz(即,重氩的切断频率)。最后,我们发现量子效应对于低温下的ITC频谱很重要,例如我们系统中的30 K以下。我们在这里的结果系统地研究了非谐调性,非均匀性和量子效应对ITC频谱的影响,这对于设计和优化界面具有更好的性能至关重要。

Interfacial thermal transport is critical for many thermal-related applications such as heat dissipation in electronics. While the total interfacial thermal conductance (ITC) can be easily measured or calculated, the ITC spectral mapping has been investigated only recently and is not fully understood. By combining nonequilibrium molecular dynamics simulations and atomistic Green's function method, we systematically investigate the ITC spectrum across an ideal interface, i.e., the argon-heavy argon interface. Our results show that the ITC spectrum increases gradually with temperature as more phonons and anharmonic scattering channels are activated, e.g., the vibrations with frequencies larger than 1 THz can contribute 5% (15%) to the total ITC at 2 K (40 K) through anharmonic phonon scatterings channels. We further find that the ITC spectrum from the left interfacial Hamiltonian is quite different from that of the right interfacial Hamiltonian, which stems from the asymmetry of anharmonic phonon scatterings caused by the dissimilar vibrational property of the two interfacial contacts. While all the phonons are involved in the anharmonic scatterings for the heavy argon interfacial Hamiltonian, these phonons involved in the anharmonic phonon scatterings from the argon interfacial Hamiltonians are mainly these vibrations with frequency smaller than 1 THz (i.e., the cut-off frequency of heavy argon). Finally, we find the quantum effect is important for the ITC spectrum at low temperatures, e.g., below 30 K in our systems. Our results here systematically investigate the influence of anharmonicity, non-homogeneity, and quantum effects on the ITC spectrum, which is critical for designing and optimizing the interfaces with better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源