论文标题
LUEM:网络中本地用户参与最大化
LUEM : Local User Engagement Maximization in Networks
论文作者
论文摘要
了解社交网络是社交网络分析中的一个基本问题,因为它的应用众多。最近,用户参与网络已受到许多研究小组的广泛关注。但是,大多数用户参与模型都集中在全球用户参与度上,以最大化(或最小化)参与用户的数量。在这项研究中,我们制定了所谓的本地用户参与最大化(LUEM)问题。我们证明了Luem问题是NP-HARD。为了获得高质量的结果,我们提出了一种结合传统爬山方法的近似算法。为了提高效率,我们提出了一种有效的修剪策略,同时保持有效性。此外,通过观察学位和用户参与之间的关系,我们提出了一种有效的启发式算法,以保持有效性。最后,我们在十个现实世界网络上进行了广泛的实验,以证明所提出的算法的优越性。我们观察到,与最佳的基线算法相比,拟议的算法最多可实现605%的参与用户。
Understanding a social network is a fundamental problem in social network analysis because of its numerous applications. Recently, user engagement in networks has received extensive attention from many research groups. However, most user engagement models focus on global user engagement to maximize (or minimize) the number of engaged users. In this study, we formulate the so-called Local User Engagement Maximization (LUEM) problem. We prove that the LUEM problem is NP-hard. To obtain high-quality results, we propose an approximation algorithm that incorporates a traditional hill-climbing method. To improve efficiency, we propose an efficient pruning strategy while maintaining effectiveness. In addition, by observing the relationship between the degree and user engagement, we propose an efficient heuristic algorithm that preserves effectiveness. Finally, we conducted extensive experiments on ten real-world networks to demonstrate the superiority of the proposed algorithms. We observed that the proposed algorithm achieved up to 605% more engaged users compared to the best baseline algorithms.