论文标题

等级减少深度神经网络

Rank Diminishing in Deep Neural Networks

论文作者

Feng, Ruili, Zheng, Kecheng, Huang, Yukun, Zhao, Deli, Jordan, Michael, Zha, Zheng-Jun

论文摘要

神经网络的等级测量跨层流动的信息。它是关键结构条件的一个实例,该实例适用于机器学习的广泛领域。特别是,低级别特征表示的假设会导致许多体系结构中的算法发展。然而,对于神经网络,产生低级别结构的内在机制仍然模糊且不清楚。为了填补这一空白,我们对网络等级的行为进行了严格的研究,尤其关注排名不足的概念。从理论上讲,我们从差分和代数组成的基本规则中建立了通用的单调降低属性,并发现网络块和深度函数耦合的等级缺陷。借助我们的数值工具,我们提供了对实际设置中网络等级的每层行为的首次经验分析,即ImageNet上的重新NET,DEEP MLP和变形金刚。这些经验结果与我们的理论直接一致。此外,我们揭示了由深网的等级缺陷引起的一种新颖的独立赤字现象,在这种情况下,可以通过少数其他类别的信心来线性地决定了对特定类别的分类信心。这项工作的理论结果以及经验发现,可以提高人们对深神经网络固有原理的理解。

The rank of neural networks measures information flowing across layers. It is an instance of a key structural condition that applies across broad domains of machine learning. In particular, the assumption of low-rank feature representations leads to algorithmic developments in many architectures. For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear. To fill this gap, we perform a rigorous study on the behavior of network rank, focusing particularly on the notion of rank deficiency. We theoretically establish a universal monotonic decreasing property of network rank from the basic rules of differential and algebraic composition, and uncover rank deficiency of network blocks and deep function coupling. By virtue of our numerical tools, we provide the first empirical analysis of the per-layer behavior of network rank in practical settings, i.e., ResNets, deep MLPs, and Transformers on ImageNet. These empirical results are in direct accord with our theory. Furthermore, we reveal a novel phenomenon of independence deficit caused by the rank deficiency of deep networks, where classification confidence of a given category can be linearly decided by the confidence of a handful of other categories. The theoretical results of this work, together with the empirical findings, may advance understanding of the inherent principles of deep neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源