论文标题

用于量子控制的物理信息神经网络

Physics-informed neural networks for quantum control

论文作者

Norambuena, Ariel, Mattheakis, Marios, González, Francisco J., Coto, Raúl

论文摘要

量子控制是一个普遍存在的研究领域,它使物理学家能够深入量子系统的动态和特征,为各种原子,光学,机械和固态系统提供强大的应用程序。近年来,基于优化过程的传统控制技术已转化为有效的人工智能算法。在这里,我们引入了一种通过物理信息神经网络(PINN)的计算方法,用于最佳量子控制问题。我们通过高概率,短时演变和使用低能消耗控制措施有效地解决了状态到国家转移问题,将方法应用于打开量子系统。此外,我们说明了PINN在物理参数和初始条件的变化下解决相同问题的灵活性,与标准控制技术相比,有优势。

Quantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and features of quantum systems, delivering powerful applications for various atomic, optical, mechanical, and solid-state systems. In recent years, traditional control techniques based on optimization processes have been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs). We apply our methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high probabilities, short-time evolution, and using low-energy consumption controls. Furthermore, we illustrate the flexibility of PINNs to solve the same problem under changes in physical parameters and initial conditions, showing advantages in comparison with standard control techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源