论文标题

Ultra:乳腺肿瘤细胞评估的不确定性吸引标签分布学习

ULTRA: Uncertainty-aware Label Distribution Learning for Breast Tumor Cellularity Assessment

论文作者

Li, Xiangyu, Liang, Xinjie, Luo, Gongning, Wang, Wei, Wang, Kuanquan, Li, Shuo

论文摘要

乳腺癌的新辅助治疗(NAT)是临床实践中常见的治疗选择。肿瘤细胞(TC)代表肿瘤床中浸润性肿瘤的百分比,已被广泛用于量化乳腺癌对NAT的反应。因此,自动TC估计在临床实践中很重要。但是,现有的最新方法通常将其视为TC分数回归问题,它忽略了由主观评估或多个评估者引起的TC标签的歧义。在本文中,为了有效利用标签歧义,我们提出了一个不确定性吸引的标签分布学习(ULTRA)框架以进行自动TC估计。拟议的超级首先将单值TC标签转换为离散标签分布,这有效地模拟了所有可能的TC标签之间的歧义。此外,该网络通过最大程度地减少预测和地面TC标签分布之间的Kullback-Leibler(KL)差异来学习TC标签分布,从而更好地监督该模型以利用TC标签的歧义。此外,在临床实践中,具有多分支的特征融合模块的超级评估者融合过程,以进一步探索TC标签的不确定性。我们评估了公共Bresspathq数据集上的Ultra。实验结果表明,超大的余量优于基于回归的方法,并获得了最先进的结果。该代码将从https://github.com/perceptioncomputinglab/ultra获得

Neoadjuvant therapy (NAT) for breast cancer is a common treatment option in clinical practice. Tumor cellularity (TC), which represents the percentage of invasive tumors in the tumor bed, has been widely used to quantify the response of breast cancer to NAT. Therefore, automatic TC estimation is significant in clinical practice. However, existing state-of-the-art methods usually take it as a TC score regression problem, which ignores the ambiguity of TC labels caused by subjective assessment or multiple raters. In this paper, to efficiently leverage the label ambiguities, we proposed an Uncertainty-aware Label disTRibution leArning (ULTRA) framework for automatic TC estimation. The proposed ULTRA first converted the single-value TC labels to discrete label distributions, which effectively models the ambiguity among all possible TC labels. Furthermore, the network learned TC label distributions by minimizing the Kullback-Leibler (KL) divergence between the predicted and ground-truth TC label distributions, which better supervised the model to leverage the ambiguity of TC labels. Moreover, the ULTRA mimicked the multi-rater fusion process in clinical practice with a multi-branch feature fusion module to further explore the uncertainties of TC labels. We evaluated the ULTRA on the public BreastPathQ dataset. The experimental results demonstrate that the ULTRA outperformed the regression-based methods for a large margin and achieved state-of-the-art results. The code will be available from https://github.com/PerceptionComputingLab/ULTRA

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源