论文标题
zariski晶体的密度
Zariski density of crystalline points
论文作者
论文摘要
我们表明,在$ p $ - adic场的绝对Galois组的变形空间中,结晶点是Zariski密集的。我们还表明,这些点在子空间的参数化变形中是密集的,而确定性等于固定晶体特征。我们的证明纯粹是本地的,适用于所有$ p $ - adiC领域和所有残留的galois表示。
We show that crystalline points are Zariski dense in the deformation space of a representation of the absolute Galois group of a $p$-adic field. We also show that these points are dense in the subspace parameterizing deformations with determinant equal to a fixed crystalline character. Our proof is purely local and works for all $p$-adic fields and all residual Galois representations.