论文标题
SS-GNN:一个简单结构的图形神经网络,用于亲和力预测
SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction
论文作者
论文摘要
高效有效的药物 - 目标结合亲和力(DTBA)预测是一项具有挑战性的任务,因为实际应用中的计算资源有限,并且是药物筛查的关键基础。受图形神经网络(GNN)良好表示能力的启发,我们提出了一个简单结构的GNN模型,以准确预测DTBA。通过基于距离阈值构建单个无向图以表示蛋白质 - 配体相互作用,大大降低了图数据的比例。此外,忽略蛋白质中的共价键进一步降低了模型的计算成本。 GNN-MLP模块作为两个相互独立的过程,将原子和边缘的潜在特征提取。我们还开发了一种基于边缘的原子对特征聚合方法,以表示复杂的相互作用和一种基于图的基于图的方法来预测复合物的结合亲和力。我们使用简单的模型(仅具有0.60万参数)实现最新的预测性能,而无需引入复杂的几何特征描述。 SS-GNN在PDBBIND V2016 CORE SET上实现Pearson的RP = 0.853,优于最先进的GNN方法的RP = 0.853。此外,简化的模型结构和简洁的数据处理过程提高了模型的预测效率。对于典型的蛋白质配体复合物,亲和力预测仅为0.2 ms。所有代码均可在https://github.com/xianyuco/ss-gnn上自由访问。
Efficient and effective drug-target binding affinity (DTBA) prediction is a challenging task due to the limited computational resources in practical applications and is a crucial basis for drug screening. Inspired by the good representation ability of graph neural networks (GNNs), we propose a simple-structured GNN model named SS-GNN to accurately predict DTBA. By constructing a single undirected graph based on a distance threshold to represent protein-ligand interactions, the scale of the graph data is greatly reduced. Moreover, ignoring covalent bonds in the protein further reduces the computational cost of the model. The GNN-MLP module takes the latent feature extraction of atoms and edges in the graph as two mutually independent processes. We also develop an edge-based atom-pair feature aggregation method to represent complex interactions and a graph pooling-based method to predict the binding affinity of the complex. We achieve state-of-the-art prediction performance using a simple model (with only 0.6M parameters) without introducing complicated geometric feature descriptions. SS-GNN achieves Pearson's Rp=0.853 on the PDBbind v2016 core set, outperforming state-of-the-art GNN-based methods by 5.2%. Moreover, the simplified model structure and concise data processing procedure improve the prediction efficiency of the model. For a typical protein-ligand complex, affinity prediction takes only 0.2 ms. All codes are freely accessible at https://github.com/xianyuco/SS-GNN.