论文标题
通过类比的维度理解叙事
Understanding Narratives through Dimensions of Analogy
论文作者
论文摘要
类比推理是一种有力的定性推理工具,使人类能够连接两种情况,并从熟悉的情况下概括他们的知识。认知科学研究为类似推理的丰富性和复杂性提供了宝贵的见解,以及具有有限可扩展性的表达性类似推理者的实施。现代可伸缩的AI技术具有类比的推理潜力,仅应用于比例类比的特殊情况,而不是理解高阶类比。在本文中,我们旨在通过以下方式弥合差距:1)基于认知科学研究的成熟见解,对六个比喻进行形式化,2)用这些维度中的每个维度注释寓言,以及3)定义四个任务,具有越来越多的复杂性来启用AI技术的可扩展评估。在这些任务上使用语言模型和神经符号AI推理的实验表明,可以通过类似的类比来应用最先进的方法,以有限的成功,激励需要进一步研究AI的全面和可扩展性的类似推理。我们使所有代码和数据可用。
Analogical reasoning is a powerful qualitative reasoning tool that enables humans to connect two situations, and to generalize their knowledge from familiar to novel situations. Cognitive Science research provides valuable insights into the richness and complexity of analogical reasoning, together with implementations of expressive analogical reasoners with limited scalability. Modern scalable AI techniques with the potential to reason by analogy have been only applied to the special case of proportional analogy, and not to understanding higher-order analogies. In this paper, we aim to bridge the gap by: 1) formalizing six dimensions of analogy based on mature insights from Cognitive Science research, 2) annotating a corpus of fables with each of these dimensions, and 3) defining four tasks with increasing complexity that enable scalable evaluation of AI techniques. Experiments with language models and neuro-symbolic AI reasoners on these tasks reveal that state-of-the-art methods can be applied to reason by analogy with a limited success, motivating the need for further research towards comprehensive and scalable analogical reasoning by AI. We make all our code and data available.