论文标题

紧凑的Vaisman流形

Bott-Chern cohomology of compact Vaisman manifolds

论文作者

Istrati, Nicolina, Otiman, Alexandra

论文摘要

我们对基本的共同体学的紧凑型Vaisman歧管的Bott-Chern共同学组进行了明确的描述。我们推断,Vaisman歧管的鸡蛋切奇数量和杂种数字相互决定。另一方面,我们表明,由Angella-Tomassini引入的$δ^K $的共生不变是无限于Vaisman歧管。最后,我们对Vaisman指标的Dolbeault和Bott-Chern形式进行了共同的特征。

We give an explicit description of the Bott-Chern cohomology groups of a compact Vaisman manifold in terms of the basic cohomology. We infer that the Bott-Chern numbers and the Dolbeault numbers of a Vaisman manifold determine each other. On the other hand, we show that the cohomological invariants $Δ^k$ introduced by Angella-Tomassini are unbounded for Vaisman manifolds. Finally, we give a cohomological characterization of the Dolbeault and Bott-Chern formality for Vaisman metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源