论文标题

DE STINTER分数量子宇宙学

de Sitter Fractional Quantum Cosmology

论文作者

Jalalzadeh, S., Costa, E. W. Oliveira, Moniz, P. V.

论文摘要

我们将Riesz的分数衍生物用于Wheeler--Dewitt方程,用于封闭的DE STINTER几何形状,并获得无边界和隧道波函数。从相应的概率分布中,成核宇宙的事件范围可以是分形表面,尺寸在$ 2 \ leq d <3 $之间。具体而言,隧道波函数有利于分形尺寸小于$ 2.5 $,并且加速了幂律阶段。不同的是,无限的提案传达了分形维度接近$ 3 $,而宇宙则进入了减速阶段。随后,我们将讨论扩展到(非平整)平坦和开放场景。结果表明,鉴于在隧道提案中创建封闭通货膨胀宇宙的可能性被指数抑制,因此在分数通货膨胀量量子宇宙中受到青睐。

We employ Riesz's fractional derivative into the Wheeler--DeWitt equation for a closed de Sitter geometry and obtain the no-boundary and tunneling wavefunctions. From the corresponding probability distributions, the event horizon of the nucleated universe can be a fractal surface with dimensions between $2\leq D<3$. Concretely, the tunneling wavefunction favors fractal dimensions less than $2.5$ and an accelerated power-law phase. Differently, the no-boundary proposal conveys fractal dimensions close to $3$, with the universe instead entering a decelerated phase. Subsequently, we extend our discussion towards (non-trivial compact) flat and open scenarios. Results suggest that given the probability of creation of a closed inflationary universe in the tunneling proposal is exponentially suppressed, a flat or an open universe becomes favored within fractional inflationary quantum universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源