论文标题

关于联合学习的跨性别的隐私和个性化

On Privacy and Personalization in Cross-Silo Federated Learning

论文作者

Liu, Ziyu, Hu, Shengyuan, Wu, Zhiwei Steven, Smith, Virginia

论文摘要

虽然差异隐私(DP)的应用在联合学习(FL)中得到了很好的研究,但考虑到DP及其对Cross-Silo FL的影响,缺乏工作,该设置的特征是每个包含许多数据主体的客户数量有限。在跨索洛fl中,客户级DP的常规概念不太适合现实世界的隐私法规,通常涉及内部数据主体,而不是孤岛本身。在这项工作中,我们相反,考虑了孤岛特定样品级DP的替代概念,其中筒仓为当地示例设定了自己的隐私目标。在这种情况下,我们重新考虑了个性化在联合学习中的作用。特别是,我们表明,均值指定的多任务学习(MR-MTL)是一个简单的个性化框架,是交叉silo fl的强大基准:在更强大的隐私要求下,孤岛被激励彼此之间更多地互化以减轻DP噪声,从而导致相对于标准基准方法的一致改进。我们提供了对竞争方法以及MR-MTL的理论表征进行平均估计的经验研究,突出了隐私与跨核数据异质性之间的相互作用。我们的工作旨在为私人跨索洛FL建立基准,并确定该领域未来工作的关键方向。

While the application of differential privacy (DP) has been well-studied in cross-device federated learning (FL), there is a lack of work considering DP and its implications for cross-silo FL, a setting characterized by a limited number of clients each containing many data subjects. In cross-silo FL, usual notions of client-level DP are less suitable as real-world privacy regulations typically concern the in-silo data subjects rather than the silos themselves. In this work, we instead consider an alternative notion of silo-specific sample-level DP, where silos set their own privacy targets for their local examples. Under this setting, we reconsider the roles of personalization in federated learning. In particular, we show that mean-regularized multi-task learning (MR-MTL), a simple personalization framework, is a strong baseline for cross-silo FL: under stronger privacy requirements, silos are incentivized to federate more with each other to mitigate DP noise, resulting in consistent improvements relative to standard baseline methods. We provide an empirical study of competing methods as well as a theoretical characterization of MR-MTL for mean estimation, highlighting the interplay between privacy and cross-silo data heterogeneity. Our work serves to establish baselines for private cross-silo FL as well as identify key directions of future work in this area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源