论文标题

在一般线性谎言颜色代数的最大亚伯层亚甲

On the maximal abelian subalgebras of the general linear Lie color algebras

论文作者

Wang, Shujuan, Liu, Wende

论文摘要

令$γ$为有限的组,而$ v $有限维$γ$在代数封闭的特征领域不等于2的特征领域。在共轭的意义上,我们将所有所谓的前nil或nil Maximal Abelian Abelian Subgebras分类为一般的Lineareal Lineare Lielgebra $ Algebra $ al $ \ frak}(gl fraak)(在$γ$是一个环状群体的情况下,我们确定了任何有限维度的Abelian Lie color代数的前尼尔或nil忠实表示的最小维度。

Let $Γ$ be a finite group and $V$ a finite-dimensional $Γ$-graded space over an algebraically closed field of characteristic not equal to 2. In the sense of conjugation, we classify all the so-called pre-nil or nil maximal abelian subalgebras for the general linear Lie color algebra $\frak{gl}(V,Γ)$. In the situation of $Γ$ being a cyclic group, we determine the minimal dimensions of pre-nil or nil faithful representations for any finite-dimensional abelian Lie color algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源