论文标题
DEEPJSCC-Q:星座限制了深连接源通道编码
DeepJSCC-Q: Constellation Constrained Deep Joint Source-Channel Coding
论文作者
论文摘要
最近的工作表明,现代机器学习技术可以为长期存在的联合源通道编码(JSCC)问题提供另一种方法。非常有希望的初始结果,优于利用单独源和通道代码的流行数字方案,已被证明用于使用深神经网络(DNNS)的无线图像和视频传输。但是,对此类方案的端到端培训需要可区分的通道输入表示。因此,先前的工作假设可以通过通道传输任何复杂值。这可以防止在硬件或协议只能接收某些由数字星座规定的频道输入的方案中应用这些代码。在此,我们建议使用有限通道输入字母的无线图像传输端到端优化的JSCC解决方案DeepJSCC-Q。我们表明,DEEPJSCC-Q可以实现与先前的工作相似的性能,这些效果允许任何复杂的有价值的通道输入,尤其是在可用的高调制顺序时,并且随着调制顺序的增加,该性能渐近地接近了不受约束的通道输入。重要的是,DEEPJSCC-Q保留了不可预测的渠道条件下图像质量的优雅降解,这是在频道迅速变化的移动系统中部署的理想属性。
Recent works have shown that modern machine learning techniques can provide an alternative approach to the long-standing joint source-channel coding (JSCC) problem. Very promising initial results, superior to popular digital schemes that utilize separate source and channel codes, have been demonstrated for wireless image and video transmission using deep neural networks (DNNs). However, end-to-end training of such schemes requires a differentiable channel input representation; hence, prior works have assumed that any complex value can be transmitted over the channel. This can prevent the application of these codes in scenarios where the hardware or protocol can only admit certain sets of channel inputs, prescribed by a digital constellation. Herein, we propose DeepJSCC-Q, an end-to-end optimized JSCC solution for wireless image transmission using a finite channel input alphabet. We show that DeepJSCC-Q can achieve similar performance to prior works that allow any complex valued channel input, especially when high modulation orders are available, and that the performance asymptotically approaches that of unconstrained channel input as the modulation order increases. Importantly, DeepJSCC-Q preserves the graceful degradation of image quality in unpredictable channel conditions, a desirable property for deployment in mobile systems with rapidly changing channel conditions.