论文标题

乘积结构和在O最低组中的随机步行

Multiplicative structures and random walks in o-minimal groups

论文作者

Spink, Hunter

论文摘要

我们证明了包含大型乘法结构的可定义组的O最低可定义子集的$ S \子集的结构定理,并且显示可定义的组没有任意接近身份的扭转界限。作为一个应用程序,对于某些型号,对于$ n $ step随机步行$ x $ in $ g $,我们显示上限$ \ mathbb {p}(x \ in s)\ le n^{ - c} $,以及$ x $的$ x $的结构定理,当$ x $时,$ \ m mathbb {p}(x \ in s)(x \ in s)

We prove structure theorems for o-minimal definable subsets $S\subset G$ of definable groups containing large multiplicative structures, and show definable groups do not have bounded torsion arbitrarily close to the identity. As an application, for certain models of $n$-step random walks $X$ in $G$ we show upper bounds $\mathbb{P}(X\in S)\le n^{-C}$ and a structure theorem for the steps of $X$ when $\mathbb{P}(X\in S)\ge n^{-C'}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源