论文标题
具有嘈杂输入输出数据的数据驱动控制的行为方法
A behavioral approach to data-driven control with noisy input-output data
论文作者
论文摘要
本文介绍了数据驱动的稳定性分析和反馈输入输出系统(AR)形式的反馈稳定性。我们假设从某些未知的AR系统获得了有限时间间隙的嘈杂输入输出数据。然后开发基于数据的测试以分析未知系统是否稳定,或验证是否存在稳定的动态反馈控制器。如果是这样,则使用数据计算稳定控制器。为了做到这一点,我们采用行为方法来进行系统和控制,这意味着与数据驱动控制中的现有方法背道而驰。我们的结果在很大程度上依赖于使用二次差异形式(QDF)的概念作为AR形式的系统形式的渐近稳定性的表征,作为自主AR系统Lyapunov函数的自然框架。我们在输入输出AR系统的背景下介绍了二次稳定性和二次稳定的信息性数据的概念,并为这些属性建立了必要和足够的条件。此外,本文将基于二次矩阵不平等(QMI)和Yakubovich的S-Lemma的基质版本的结果。
This paper deals with data-driven stability analysis and feedback stabillization of linear input-output systems in autoregressive (AR) form. We assume that noisy input-output data on a finite time-interval have been obtained from some unknown AR system. Data-based tests are then developed to analyse whether the unknown system is stable, or to verify whether a stabilizing dynamic feedback controller exists. If so, stabilizing controllers are computed using the data. In order to do this, we employ the behavioral approach to systems and control, meaning a departure from existing methods in data driven control. Our results heavily rely on a characterization of asymptotic stability of systems in AR form using the notion of quadratic difference form (QDF) as a natural framework for Lyapunov functions of autonomous AR systems. We introduce the concepts of informative data for quadratic stability and quadratic stabilization in the context of input-output AR systems and establish necessary and sufficient conditions for these properties to hold. In addition, this paper will build on results on quadratic matrix inequalties (QMIs) and a matrix version of Yakubovich's S-lemma.