论文标题

基于DU-NET基于组织学图像中癌症分割的无监督对比学习

DU-Net based Unsupervised Contrastive Learning for Cancer Segmentation in Histology Images

论文作者

Li, Yilong, Wang, Yaqi, Zhou, Huiyu, Wang, Huaqiong, Jia, Gangyong, Zhang, Qianni

论文摘要

在本文中,我们为组织学图像引入了无监督的癌症分割框架。该框架涉及一种有效的对比学习方案,用于提取分割独特的视觉表示。编码器是一个深U-NET(DU-NET)结构,与正常的U-NET相比包含一个额外的完全卷积层。开发了一种对比学习方案,以解决缺乏对肿瘤边界高质量注释的训练集的问题。采用了一组特定的数据增强技术来提高对比度学习的学习颜色特征的可区分性。使用卷积条件随机场进行平滑和消除噪声。该实验表明,比某些受欢迎的监督网络更好地表明了分割的竞争性能。

In this paper, we introduce an unsupervised cancer segmentation framework for histology images. The framework involves an effective contrastive learning scheme for extracting distinctive visual representations for segmentation. The encoder is a Deep U-Net (DU-Net) structure that contains an extra fully convolution layer compared to the normal U-Net. A contrastive learning scheme is developed to solve the problem of lacking training sets with high-quality annotations on tumour boundaries. A specific set of data augmentation techniques are employed to improve the discriminability of the learned colour features from contrastive learning. Smoothing and noise elimination are conducted using convolutional Conditional Random Fields. The experiments demonstrate competitive performance in segmentation even better than some popular supervised networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源