论文标题
使用倾斜图像验证向量数据
Validation of Vector Data using Oblique Images
论文作者
论文摘要
倾斜的图像是与地球表面倾斜的空中照片。这些图像中向量和其他地理空间数据的投影取决于摄像机参数,地理空间实体的位置,表面地形,遮挡和可见性。本文提出了一种可靠且可扩展的算法,可使用斜图像检测矢量数据的不一致。该算法使用图像描述符来编码图像中地理空间实体的局部外观。这些图像描述符结合了颜色,像素强度梯度,纹理和可检测的滤镜响应。培训了支持向量机分类器,以检测与基础向量数据,数字高程图,建筑模型和摄像头参数不一致的图像描述符。在本文中,我们在可见的路段和非道路数据上训练分类器。此后,训练有素的分类器检测到矢量的不一致,其中包括遮挡和未对准的道路细分。一致的道路段验证了我们的向量,DEM和3-D模型数据的这些区域,而段不一致指出了错误。我们进一步表明,搜索与未对齐道路的可见路段一致的描述符会产生与图像中像素一致的所需道路对齐。
Oblique images are aerial photographs taken at oblique angles to the earth's surface. Projections of vector and other geospatial data in these images depend on camera parameters, positions of the geospatial entities, surface terrain, occlusions, and visibility. This paper presents a robust and scalable algorithm to detect inconsistencies in vector data using oblique images. The algorithm uses image descriptors to encode the local appearance of a geospatial entity in images. These image descriptors combine color, pixel-intensity gradients, texture, and steerable filter responses. A Support Vector Machine classifier is trained to detect image descriptors that are not consistent with underlying vector data, digital elevation maps, building models, and camera parameters. In this paper, we train the classifier on visible road segments and non-road data. Thereafter, the trained classifier detects inconsistencies in vectors, which include both occluded and misaligned road segments. The consistent road segments validate our vector, DEM, and 3-D model data for those areas while inconsistent segments point out errors. We further show that a search for descriptors that are consistent with visible road segments in the neighborhood of a misaligned road yields the desired road alignment that is consistent with pixels in the image.