论文标题

$ \ MATHCAL {C}(K,E)$ spaces和$ k $的高度的同构

Isomorphisms of $\mathcal{C}(K, E)$ spaces and height of $K$

论文作者

Rondoš, Jakub, Somaglia, Jacopo

论文摘要

令$ k_1 $,$ k_2 $是紧凑的hausdorff空间和$ e_1,e_2 $ be banach Spaces不包含$ C_0 $的副本。我们建立了较低的估计值$ \ MATHCAL {c}(k_1,e_1)$和$ \ MATHCAL {C}(K_2,e_2)$的banach-Mazur距离$ \ MATHCAL {c}(k_1,e_1)$,基于ordinals $ ht(k_1)$,$ ht(k_2)$,s s speact of scone specy of speact of Spess of Spec of Spess of Spec s of specy of specy of specials of specials。作为推论,我们推断出$ \ MATHCAL {C}(K_1,E_1)$和$ \ MATHCAL {C}(k_2,e_2)$不是同构的,如果$ ht(k_1)$与$ ht(k_2)$有根本不同。

Let $K_1$, $K_2$ be compact Hausdorff spaces and $E_1, E_2$ be Banach spaces not containing a copy of $c_0$. We establish lower estimates of the Banach-Mazur distance between the spaces of continuous functions $\mathcal{C}(K_1, E_1)$ and $\mathcal{C}(K_2, E_2)$ based on the ordinals $ht(K_1)$, $ht(K_2)$, which are new even for the case of spaces of real valued functions on ordinal intervals. As a corollary we deduce that $\mathcal{C}(K_1, E_1)$ and $\mathcal{C}(K_2, E_2)$ are not isomorphic if $ht(K_1)$ is substantially different from $ht(K_2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源