论文标题

liggeene:一种平稳的替代方案,用于检查深度医疗推理任务的损失

LogGENE: A smooth alternative to check loss for Deep Healthcare Inference Tasks

论文作者

Jeendgar, Aryaman, Devale, Tanmay, Dhavala, Soma S, Saha, Snehanshu

论文摘要

在可靠的深度学习中,挖掘大型数据集并从TEM获得校准的预测是直接的相关性和实用性。在我们的工作中,我们开发了基于基因表达(例如基因表达)中基于深层神经网络的推论的方法。但是,与典型的深度学习方法不同,我们的推论技术在准确性方面达到最先进的性能,也可以提供解释并报告不确定性估计。我们采用分位数回归框架来预测一组管家基因表达式的完整条件分位数。有条件的分位数除了提供对预测的丰富解释外,还对测量噪声也很强。我们的技术在高通量基因组学中尤其重要,该领域正在为个性化的医疗保健和有针对性的药物设计和分娩带来新时代。但是,用于驱动估计过程的分位数回归中使用的检查损耗是无可分割的。我们将log-cosh作为检查损失的平滑效力。我们将方法应用于地理微阵列数据集。我们还将方法扩展到二进制分类设置。此外,我们研究了更快收敛损失的平稳性的其他后果。我们进一步将分类框架应用于其他医疗保健推理任务,例如心脏病,乳腺癌,糖尿病等,作为对我们框架的概括能力的测试,还评估了其他针对回归和分类任务的非医疗保健相关数据集。

Mining large datasets and obtaining calibrated predictions from tem is of immediate relevance and utility in reliable deep learning. In our work, we develop methods for Deep neural networks based inferences in such datasets like the Gene Expression. However, unlike typical Deep learning methods, our inferential technique, while achieving state-of-the-art performance in terms of accuracy, can also provide explanations, and report uncertainty estimates. We adopt the Quantile Regression framework to predict full conditional quantiles for a given set of housekeeping gene expressions. Conditional quantiles, in addition to being useful in providing rich interpretations of the predictions, are also robust to measurement noise. Our technique is particularly consequential in High-throughput Genomics, an area which is ushering a new era in personalized health care, and targeted drug design and delivery. However, check loss, used in quantile regression to drive the estimation process is not differentiable. We propose log-cosh as a smooth-alternative to the check loss. We apply our methods on GEO microarray dataset. We also extend the method to binary classification setting. Furthermore, we investigate other consequences of the smoothness of the loss in faster convergence. We further apply the classification framework to other healthcare inference tasks such as heart disease, breast cancer, diabetes etc. As a test of generalization ability of our framework, other non-healthcare related data sets for regression and classification tasks are also evaluated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源