论文标题
$(k_u \ times k_g)(λ)$几乎可以解析的偶数周期系统
Almost resolvable even cycle systems of $(K_u \times K_g)(λ)$
论文作者
论文摘要
在本文中,我们证明,对于所有$ k \ equiv 0(k_u \ times k_g)(k_u \ times k_g)(λ)$几乎可以分解$ k $ -cycle Systems(简短$ k $ -Arcs),所有$ k \ equiv 0(mod \ 4)$都存在,少数可能的异常,而$ \ times $ \ times $代表图形的Tensor tensor。
In this paper, we prove that almost resolvable $k$-cycle systems (briefly $k$-ARCS) of $(K_u \times K_g)(λ)$ exists for all $k \equiv 0(mod \ 4) $ with few possible exceptions, where $\times$ represents tensor product of graphs.