论文标题

具有大数据的不均匀多孔培养基方程:

An inhomogeneous porous medium equation with large data: well-posedness

论文作者

Muratori, Matteo, Petitt, Troy

论文摘要

我们研究欧几里得加权多孔培养基方程的溶液,当重量在[0,2)$中的$ | x |^{ - γ} $(例如$ | x |^{ - γ} $([0,2)$时的表现时,允许在原点上奇异。特别是,我们以加权$ l^1 $ -A-A-A-A-A-avervicen sense中的意义,以$ | x |^{(2-γ)/(M-1)/(2-γ)/(M-1)/(M-1)/(M-1)/(M-1)} $以“终点”的“终点”显示出来的本地存在和独特性。我们还确定了全球存在和爆破类别,其各自的形式极大地支持了至少对于积极解决方案,这种增长率是最佳的说法。作为我们存在证明的关键步骤,我们为大数据建立了局部平滑效果,而无需诉诸于经典的Aronson-Bénilan不平等,并使用Bénilan-Crandall不平等,而是使用Bénilan-Crandall不平等,这可能具有独立的利益,因为后者在更一般的一般环境中存在。

We study solutions of a Euclidean weighted porous medium equation when the weight behaves at spacial infinity like $|x|^{-γ}$, for $γ\in [0,2)$, and is allowed to be singular at the origin. In particular we show local-in-time existence and uniqueness for a class of large initial data which includes as "endpoints" those growing at a rate of $ |x|^{(2-γ)/(m-1)}$, in a weighted $L^1$-average sense. We also identify global-existence and blow-up classes, whose respective forms strongly support the claim that such a growth rate is optimal, at least for positive solutions. As a crucial step in our existence proof we establish a local smoothing effect for large data without resorting to the classical Aronson-Bénilan inequality and using the Bénilan-Crandall inequality instead, which may be of independent interest since the latter holds in much more general settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源