论文标题
在热力学极限的超声传感和光力的屈曲型微型腔内
Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities
论文作者
论文摘要
我们将整体,屈曲型腔的使用描述为超声传感器。压力性的薄膜堆栈中的图案化分层产生具有密封和空腔区域的高素质Plano-Concave光学谐振器。弯曲的镜子还充当柔性膜,对外部压力变化的反应高度响应。由于其有效的光听力机械耦合,在低光学询问功能以及适度的光学质量(q〜10^3)和机械(q〜10^2)质量因素下,在低光学询问功能下实现了热置置液限有限的灵敏度。我们预测并验证宽带(最高约5 MHz),以噪声等效压力(NEP)低至〜30-100 $μ$ PA/Hz^1/2,空气耦合超声检测。这对应于超声强力敏感性〜2 x 10^-13 n/hz^1/2,并可以检测在空气中〜20 cm的距离内传播的MHz范围信号。在水中,在较宽的频率范围内(高达〜30 MHz)显示了热噪声限制的灵敏度,NEP低至〜100-800 $ $ PA/Hz^1/2。这些空腔表现出几乎全向反应,而〜3-4个数量级比相似大小的压电设备更敏感。它们很容易被实现为大型阵列,并且自然适合通过自由空间梁或光纤指导耦合,它们与竞争光学设备具有显着的实践优势,因此对于医疗和工业超声成像中的几种新兴应用可能会引起人们的关注。
We describe the use of monolithic, buckled-dome cavities as ultrasound sensors. Patterned delamination within a compressively stressed thin film stack produces high-finesse plano-concave optical resonators with sealed and empty cavity regions. The buckled mirror also functions as a flexible membrane, highly responsive to changes in external pressure. Owing to their efficient opto-acousto-mechanical coupling, thermal-displacement-noise limited sensitivity is achieved at low optical interrogation powers and for modest optical (Q ~ 10^3) and mechanical (Q ~ 10^2) quality factors. We predict and verify broadband (up to ~ 5 MHz), air-coupled ultrasound detection with noise-equivalent pressure (NEP) as low as ~ 30-100 $μ$Pa/Hz^1/2. This corresponds to an ultrasonic force sensitivity ~ 2 x 10^-13 N/Hz^1/2 and enables the detection of MHz-range signals propagated over distances as large as ~ 20 cm in air. In water, thermal-noise-limited sensitivity is demonstrated over a wide frequency range (up to ~ 30 MHz), with NEP as low as ~ 100-800 $μ$Pa/Hz^1/2. These cavities exhibit a nearly omnidirectional response, while being ~ 3-4 orders of magnitude more sensitive than piezoelectric devices of similar size. Easily realized as large arrays and naturally suited to direct coupling by free-space beams or optical fibers, they offer significant practical advantages over competing optical devices, and thus could be of interest for several emerging applications in medical and industrial ultrasound imaging.