论文标题
关于Qubits的连接频谱距离的注意
Note on Connes spectral distances of qubits
论文作者
论文摘要
借助非共同几何形状中的数学工具,我们研究了单一和两QQUIT状态之间的谱系光谱距离。我们构造了与$ 2D $ fermionic相位空间相对应的光谱三重,并计算一个Quinbits之间的Conners光谱距离。基于连接光谱距离,我们定义了量子状态的相干度量,并计算一量状态的相干性。我们还研究了一些关于两分句子状态的简单案例,相应的光谱距离满足了毕达哥拉斯定理。我们发现,连接光谱距离与量子痕量距离不同。连接光谱距离可以被认为是量子信息科学中痕量距离的重要补充。这些结果对于研究Qubits和其他量子状态的物理关系和几何结构的研究很重要。
By virtue of the mathematical tools in noncommutative geometry, we study the Connes spectral distances between one- and two-qubit states. We construct a spectral triple corresponding to the $2D$ fermionic phase spaces, and calculate the Connes spectral distance between one qubits. Based on the Connes spectral distance, we define a coherence measure of quantum states, and calculate the coherence of one-qubit states. We also study some simple cases about two-qubit states, and the corresponding spectral distances satisfy the Pythagoras theorem. We find that the Connes spectral distances are different from quantum trace distances. The Connes spectral distance can be considered as a significant supplement to the trace distances in quantum information sciences. These results are significant for the study of physical relations and geometric structures of qubits and other quantum states.