论文标题
原始恒星中的角动量转运和中子恒星合并残余的命运
Angular Momentum Transport in Proto-Neutron Stars and the Fate of Neutron Star Merger Remnants
论文作者
论文摘要
旋转巨大恒星的核心崩溃和中子恒星(NS)二进制的聚结都导致形成热,差异旋转的NS残留物。通过内部角摩肌运输过程(“粘度”)去除差异旋转的时间尺度对残余的长期稳定性和NS方程式状态(EOS)具有关键意义。在冷却原始NS的非旋转模型的指导下,我们使用外部强加的角速度曲线$ω(R)$估算了粘度的主要粘度来源。尽管磁化不稳定性在大半径上提供了有效粘度的主要来源,但对流和/或Spruit-Tayler Dynamo在合并残余的核心中占主导地位,其中$dΩ/dr \ geq 0 $。此外,残留芯中的粘性时间尺度足够短,以至于实体旋转的强制速度比从旋转支持的外层中得到的固体旋转速度要快。在这些结果的指导下,我们开发了一个玩具模型,用于合并残余核心如何由于积聚而增长的质量和角动量。我们发现,即使总残留物质量小于通常认为阈值$ \ 1.2 m _ {\ rm tov} $,以形成稳定的稳定的稳定的旋转ns remnant($ m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ p,\ rm rm imm iS),也可能会通过信封的积聚来弥补足够巨大且缓慢旋转的初始核心的合并残留物可能会通过信封积聚崩溃到黑洞。由EOS)。这种定性的新图片对合并后残留的进化和稳定标准具有重要意义,这对来自二进制NS合并的预期电磁对应物以及对NS EOS的多通信符限制。
Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries, result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (`viscosity') has key implications for the remnant's long-term stability and the NS equation-of-state (EOS). Guided by a non-rotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular velocity profile $Ω(r)$. Although the magnetorotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Spruit-Tayler dynamo dominate in the core of merger remnants where $dΩ/dr \geq 0$. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid body rotation will be enforced faster than matter is accreted from rotationally-supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold $\approx 1.2 M_{\rm TOV}$ for forming a stable solid-body rotating NS remnant (where $M_{\rm TOV}$ is the maximum non-rotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multi-messenger constraints on the NS EOS.