论文标题
贝叶斯张量分解的矢量自回归模型,用于从高维多主题面板神经成像数据中推断出Granger因果关系模式
Bayesian Tensor Factorized Vector Autoregressive Models for Inferring Granger Causality Patterns from High-Dimensional Multi-subject Panel Neuroimaging Data
论文作者
论文摘要
使用非侵入性神经影像技术了解功能性大脑连通性模式的动力学是人类神经科学的重要重点。向量自回旋(VAR)过程和Granger因果关系分析(GCA)已被广泛用于此目的。虽然如今常规收集了高分辨率的多主体神经成像数据,但有关VAR模型的统计文献一直集中在小型至中等的维度问题和单个受试者数据上。在这些问题的激励下,我们开发了一种新型的贝叶斯随机效应面板VAR模型,用于多主体高维神经成像数据。我们从一个单个模型开始,该模型将VAR系数作为三向张量,然后通过应用Tucker Tensor分解来降低尺寸。一种新型的稀疏性诱导收缩先验允许数据自适应等级和滞后选择。然后,我们将方法扩展到新的随机效应模型的多主体数据,该模型仔细避免了受试者数量爆炸的尺寸,但也可以灵活地适应特定于主题的异质性。我们设计了马尔可夫链蒙特卡洛算法,用于后计算。最后,在后样品上执行具有后错误发现控制的GCA。该方法在模拟实验中显示出极好的经验性能。该方法应用于我们激励的功能磁共振成像研究,允许对人脑网络的方向连通性进行细节研究,从而揭示有意义但以前未经证实的皮质连通性模式。
Understanding the dynamics of functional brain connectivity patterns using noninvasive neuroimaging techniques is an important focus in human neuroscience. Vector autoregressive (VAR) processes and Granger causality analysis (GCA) have been extensively used for this purpose. While high-resolution multi-subject neuroimaging data are routinely collected now-a-days, the statistics literature on VAR models has remained heavily focused on small-to-moderate dimensional problems and single-subject data. Motivated by these issues, we develop a novel Bayesian random effects panel VAR model for multi-subject high-dimensional neuroimaging data. We begin with a single-subject model that structures the VAR coefficients as a three-way tensor, then reduces the dimensions by applying a Tucker tensor decomposition. A novel sparsity-inducing shrinkage prior allows data-adaptive rank and lag selection. We then extend the approach to a novel random effects model for multi-subject data that carefully avoids the dimensions getting exploded with the number of subjects but also flexibly accommodates subject-specific heterogeneity. We design a Markov chain Monte Carlo algorithm for posterior computation. Finally, GCA with posterior false discovery control is performed on the posterior samples. The method shows excellent empirical performance in simulation experiments. Applied to our motivating functional magnetic resonance imaging study, the approach allows the directional connectivity of human brain networks to be studied in fine detail, revealing meaningful but previously unsubstantiated cortical connectivity patterns.