论文标题
连接算法研究和用法背景:可解释AI的上下文评估的观点
Connecting Algorithmic Research and Usage Contexts: A Perspective of Contextualized Evaluation for Explainable AI
论文作者
论文摘要
近年来,人们对可解释的AI(XAI)领域的兴趣激增,文献中提出了很多算法。但是,关于如何评估XAI缺乏共识阻碍了该领域的发展。我们强调说,XAI并不是一组整体技术 - 研究人员和从业人员已经开始利用XAI算法来构建服务于不同用法环境的XAI系统,例如模型调试和决策支持。然而,对XAI的算法研究通常不会考虑这些多样化的下游使用环境,从而对实际用户产生有限的有效性甚至意外的后果,以及从业者难以做出技术选择的困难。我们认为,缩小差距的一种方法是开发评估方法,这些方法在这些用法上下文中说明了不同的用户需求。为了实现这一目标,我们通过考虑XAI评估标准对XAI的原型用法上下文的相对重要性,介绍了情境化XAI评估的观点。为了探索XAI评估标准的上下文依赖性,我们进行了两项调查研究,一项与XAI主题专家,另一个与人群工人进行。我们的结果敦促通过使用使用的评估实践进行负责任的AI研究,并在不同使用环境中对XAI的用户需求有细微的了解。
Recent years have seen a surge of interest in the field of explainable AI (XAI), with a plethora of algorithms proposed in the literature. However, a lack of consensus on how to evaluate XAI hinders the advancement of the field. We highlight that XAI is not a monolithic set of technologies -- researchers and practitioners have begun to leverage XAI algorithms to build XAI systems that serve different usage contexts, such as model debugging and decision-support. Algorithmic research of XAI, however, often does not account for these diverse downstream usage contexts, resulting in limited effectiveness or even unintended consequences for actual users, as well as difficulties for practitioners to make technical choices. We argue that one way to close the gap is to develop evaluation methods that account for different user requirements in these usage contexts. Towards this goal, we introduce a perspective of contextualized XAI evaluation by considering the relative importance of XAI evaluation criteria for prototypical usage contexts of XAI. To explore the context dependency of XAI evaluation criteria, we conduct two survey studies, one with XAI topical experts and another with crowd workers. Our results urge for responsible AI research with usage-informed evaluation practices, and provide a nuanced understanding of user requirements for XAI in different usage contexts.