论文标题

奇数非局部非本地liouville共形野外理论

Odd Dimensional Nonlocal Liouville Conformal Field Theories

论文作者

Kislev, Amitay C., Levy, Tom, Oz, Yaron

论文摘要

我们在奇数维度中构建了欧几里得liouville共形田地理论。这些理论是非本地和非统一的,具有与对数相关的liouville领域,$ {\ cal q} $ - 曲率背景和指数liouville-type的潜力。我们研究这些理论的经典和量子特性,包括球形分区函数的有限纠缠熵部分$ f $,边界保串异常和顶点操作员的相关功能。我们得出了均匀的Dozz公式的类似物及其半古典近似。

We construct Euclidean Liouville conformal field theories in odd number of dimensions. The theories are nonlocal and non-unitary with a log-correlated Liouville field, a ${\cal Q}$-curvature background, and an exponential Liouville-type potential. We study the classical and quantum properties of these theories including the finite entanglement entropy part of the sphere partition function $F$, the boundary conformal anomaly and vertex operators' correlation functions. We derive the analogue of the even-dimensional DOZZ formula and its semi-classical approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源