论文标题
局部保守和通量一致的迭代方法
Locally conservative and flux consistent iterative methods
论文作者
论文摘要
保护和一致性是双曲线保护法系统离散化的基本特性。在这里,这些概念通过正式定义局部保守和通量一致的迭代来扩展到迭代方法领域。这些概念既具有理论上的重要性:根据作者的最新工作,这表明使用显式runge-kutta方法的伪时间迭代在本地保守,但不一定是一致的。提出了Lax-Wendroff定理的扩展,揭示了趋于迟缓的保护定律系统的弱解决方案的融合。每个方程都以相同的方式修改,即通过特定的标量因子乘以空间通量项。提出了一种实施通量一致性并恢复收敛的技术。此外,为所有Krylov子空间方法,有或没有重新启动的所有Krylov子空间方法以及在某些关于离散化的假设下的方法建立了局部保护。因此,表明牛顿 - 克里洛夫的方法在局部保守,尽管不一定是一致的。使用2D可压缩欧拉方程的数值实验证实了理论结果。对通量一致性对牛顿 - 克里洛夫方法的影响的进一步数值研究表明,随着迭代次数的增加,其效果取决于情况,并且会减少。
Conservation and consistency are fundamental properties of discretizations of systems of hyperbolic conservation laws. Here, these concepts are extended to the realm of iterative methods by formally defining locally conservative and flux consistent iterations. These concepts are of both theoretical and practical importance: Based on recent work by the authors, it is shown that pseudo-time iterations using explicit Runge-Kutta methods are locally conservative but not necessarily flux consistent. An extension of the Lax-Wendroff theorem is presented, revealing convergence towards weak solutions of a temporally retarded system of conservation laws. Each equation is modified in the same way, namely by a particular scalar factor multiplying the spatial flux terms. A technique for enforcing flux consistency, and thereby recovering convergence, is presented. Further, local conservation is established for all Krylov subspace methods, with and without restarts, and for Newton's method under certain assumptions on the discretization. Thus it is shown that Newton-Krylov methods are locally conservative, although not necessarily flux consistent. Numerical experiments with the 2D compressible Euler equations corroborate the theoretical results. Further numerical investigations of the impact of flux consistency on Newton-Krylov methods indicate that its effect is case dependent, and diminishes as the number of iterations grow.