论文标题
然后和现在:量化自披露抑郁诊断的纵向有效性
Then and Now: Quantifying the Longitudinal Validity of Self-Disclosed Depression Diagnoses
论文作者
论文摘要
自我披露的心理健康诊断是在没有临床措施的情况下用作心理健康状况的基础真理注释,这是过去十年来大多数心理健康语言计算研究背后的结论。但是,精神病是动态的。先前的抑郁诊断可能不再表明个人的心理健康,无论是由于治疗还是其他缓解因素。我们问:随着时间的推移,心理健康诊断的自我诊断的自我限制在多大程度上是相关的?我们分析了五年前在社交媒体上披露抑郁症诊断的个人的最新活动,反过来又对社交媒体上心理健康状况的表现有了新的了解。我们还提供了扩展的证据,证明使用自lif病诊断策划的数据集中存在与人格相关的偏见。我们的发现激发了三个实用建议,以改善使用自张开诊断策划的心理健康数据集:1)注释诊断日期和精神病合并症; 2)使用倾向得分匹配的样本对照组; 3)识别和删除选择偏差引入的虚假相关性。
Self-disclosed mental health diagnoses, which serve as ground truth annotations of mental health status in the absence of clinical measures, underpin the conclusions behind most computational studies of mental health language from the last decade. However, psychiatric conditions are dynamic; a prior depression diagnosis may no longer be indicative of an individual's mental health, either due to treatment or other mitigating factors. We ask: to what extent are self-disclosures of mental health diagnoses actually relevant over time? We analyze recent activity from individuals who disclosed a depression diagnosis on social media over five years ago and, in turn, acquire a new understanding of how presentations of mental health status on social media manifest longitudinally. We also provide expanded evidence for the presence of personality-related biases in datasets curated using self-disclosed diagnoses. Our findings motivate three practical recommendations for improving mental health datasets curated using self-disclosed diagnoses: 1) Annotate diagnosis dates and psychiatric comorbidities; 2) Sample control groups using propensity score matching; 3) Identify and remove spurious correlations introduced by selection bias.