论文标题

神经逆变换采样器

Neural Inverse Transform Sampler

论文作者

Li, Henry, Kluger, Yuval

论文摘要

当我们希望将其用作生成模型时,两个主要障碍都会受到两个主要障碍的限制:设计$ f $,以使采样快速,并估计$ z = \ int f $,以便$ z^{ - 1} f $集成到1中。在本文中,我们表明,当通过让网络代表目标密度的累积分布函数并应用积极的广义基本定理,可以通过神经网络对一维条件密度进行建模时,可以精确地计算出$ z $。我们还得出了一种快速算法,用于通过逆变换方法从产生的表示。通过将这些原理扩展到更高的维度,我们介绍了\ textbf {神经逆变换采样器(NITS)},这是一个新颖的深度学习框架,用于建模和从一般,多维,紧凑的概率密度进行建模和采样。 NIT是一个高度表达性的密度估计器,具有端到端的可不同性,快速采样以及精确且廉价的可能性评估。我们通过将其应用于现实的高维密度估计任务来证明NIT的适用性:基于CIFAR-10数据集对基于似然的生成建模,以及对基准数据集的UCI套件的密度估计,在该数据集的UCI套件中,NITS可以在其中产生引人注目的结果竞争或超过艺术品状态。

Any explicit functional representation $f$ of a density is hampered by two main obstacles when we wish to use it as a generative model: designing $f$ so that sampling is fast, and estimating $Z = \int f$ so that $Z^{-1}f$ integrates to 1. This becomes increasingly complicated as $f$ itself becomes complicated. In this paper, we show that when modeling one-dimensional conditional densities with a neural network, $Z$ can be exactly and efficiently computed by letting the network represent the cumulative distribution function of a target density, and applying a generalized fundamental theorem of calculus. We also derive a fast algorithm for sampling from the resulting representation by the inverse transform method. By extending these principles to higher dimensions, we introduce the \textbf{Neural Inverse Transform Sampler (NITS)}, a novel deep learning framework for modeling and sampling from general, multidimensional, compactly-supported probability densities. NITS is a highly expressive density estimator that boasts end-to-end differentiability, fast sampling, and exact and cheap likelihood evaluation. We demonstrate the applicability of NITS by applying it to realistic, high-dimensional density estimation tasks: likelihood-based generative modeling on the CIFAR-10 dataset, and density estimation on the UCI suite of benchmark datasets, where NITS produces compelling results rivaling or surpassing the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源