论文标题
随机决定因素的第六刻
The Sixth Moment of Random Determinants
论文作者
论文摘要
在本文中,我们确定了不对称$ n \ times n $随机矩阵的决定因素的第六刻,其中条目是独立于任意分布$ω$的,其平均$ 0 $。此外,由于基质的大小倾向于无穷大,因此我们得出了决定因素的第六刻的渐近行为。
In this paper, we determine the sixth moment of the determinant of an asymmetric $n \times n$ random matrix where the entries are drawn independently from an arbitrary distribution $Ω$ with mean $0$. Furthermore, we derive the asymptotic behavior of the sixth moment of the determinant as the size of the matrix tends to infinity.