论文标题
加权一致性指数损失基于鼻咽癌放射癌放射性脑病评估的多模式生存模型
Weighted Concordance Index Loss-based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy
论文作者
论文摘要
辐射性脑病(REP)是鼻咽癌(NPC)放射疗法最常见的并发症。非常需要协助临床医生优化NPC放射疗法方案,以减少放射疗法诱导的颞叶损伤(RTLI),该疗程根据REP发作的概率。据我们所知,这是通过在NPC放射治疗方案中共同利用图像和非图像数据来预测放疗诱导的REP的首次探索。我们将代表预测作为生存分析任务,并根据一致性指数(CI)评估预测准确性。我们设计了一个深层多模式生存网络(MSN),并使用两个特征提取器来从多模式数据中学习判别特征。一个功能提取器在非图像数据上施加了特征选择,而另一个功能提取器从图像中学习视觉特征。因为直接使CI最大化CI的先验平衡CI(BCI)损耗函数对每批采样不均匀。因此,我们提出了一种新型的加权CI(WCI)损耗函数,以通过双平均操作分配其不同的权重有效地利用所有REP样本。我们进一步引入了WCI温度高参数,以增强样本对的风险差异,以帮助建模收敛。我们在私人数据集上广泛评估了我们的WCI,以证明其对同行的可爱性。实验结果还表明,NPC放射疗法的多模式数据可以为REP风险预测带来更多收益。
Radiation encephalopathy (REP) is the most common complication for nasopharyngeal carcinoma (NPC) radiotherapy. It is highly desirable to assist clinicians in optimizing the NPC radiotherapy regimen to reduce radiotherapy-induced temporal lobe injury (RTLI) according to the probability of REP onset. To the best of our knowledge, it is the first exploration of predicting radiotherapy-induced REP by jointly exploiting image and non-image data in NPC radiotherapy regimen. We cast REP prediction as a survival analysis task and evaluate the predictive accuracy in terms of the concordance index (CI). We design a deep multimodal survival network (MSN) with two feature extractors to learn discriminative features from multimodal data. One feature extractor imposes feature selection on non-image data, and the other learns visual features from images. Because the priorly balanced CI (BCI) loss function directly maximizing the CI is sensitive to uneven sampling per batch. Hence, we propose a novel weighted CI (WCI) loss function to leverage all REP samples effectively by assigning their different weights with a dual average operation. We further introduce a temperature hyper-parameter for our WCI to sharpen the risk difference of sample pairs to help model convergence. We extensively evaluate our WCI on a private dataset to demonstrate its favourability against its counterparts. The experimental results also show multimodal data of NPC radiotherapy can bring more gains for REP risk prediction.