论文标题
推断时间网络中的领带强度
Inferring Tie Strength in Temporal Networks
论文作者
论文摘要
在社交网络中推断平局优势是社交网络分析中的重要任务。共同的方法将纽带分类为基于强三元闭合(STC)的牢固关系。 STC指出,如果对于三个节点,$ a $,$ b $和$ c $,则在$ a $ a和$ b $以及$ a $和$ c $之间存在牢固的联系,则必须在$ b $和$ c $之间有一个(弱或强)的关系。 STC的一种称为STC+的变体允许添加一些新的弱边缘以获得改进的解决方案。到目前为止,大多数作品在静态网络中讨论了STC或STC+。但是,现代大规模的社交网络通常是高度动态的,可以将用户联系和通信作为边缘更新流。时间网络捕获这些动态。为了将STC应用于时间网络,我们首先将STC概括并引入加权版本,以便STC尊重以边缘权重形式给出的先验知识。同样,我们引入了STC+的广义加权版本。加权STC很难计算,我们的主要贡献是在时间网络中加权STC(stc+)的有效的2-辅助(分别为3-附属)流算法。作为技术贡献,我们在高尺寸$ k $的HyperGraphs中引入了完全动态的$ k $ Approximation,这是我们流算法的重要组成部分。经验评估表明,加权的STC导致解决方案比非加权STC更好地捕获边缘权重的先验知识。此外,我们表明我们的流算法有效地近似于现实世界中的大规模社交网络中的加权STC。
Inferring tie strengths in social networks is an essential task in social network analysis. Common approaches classify the ties as wea} and strong ties based on the strong triadic closure (STC). The STC states that if for three nodes, $A$, $B$, and $C$, there are strong ties between $A$ and $B$, as well as $A$ and $C$, there has to be a (weak or strong) tie between $B$ and $C$. A variant of the STC called STC+ allows adding a few new weak edges to obtain improved solutions. So far, most works discuss the STC or STC+ in static networks. However, modern large-scale social networks are usually highly dynamic, providing user contacts and communications as streams of edge updates. Temporal networks capture these dynamics. To apply the STC to temporal networks, we first generalize the STC and introduce a weighted version such that empirical a priori knowledge given in the form of edge weights is respected by the STC. Similarly, we introduce a generalized weighted version of the STC+. The weighted STC is hard to compute, and our main contribution is an efficient 2-approximation (resp. 3-approximation) streaming algorithm for the weighted STC (resp. STC+) in temporal networks. As a technical contribution, we introduce a fully dynamic $k$-approximation for the minimum weighted vertex cover problem in hypergraphs with edges of size $k$, which is a crucial component of our streaming algorithms. An empirical evaluation shows that the weighted STC leads to solutions that better capture the a priori knowledge given by the edge weights than the non-weighted STC. Moreover, we show that our streaming algorithm efficiently approximates the weighted STC in real-world large-scale social networks.