论文标题
降低离散时间动力学系统的尺寸
Dimensionality reduction of discrete-time dynamical systems
论文作者
论文摘要
复杂性科学和动力学系统理论的杰出问题之一是了解高维网络系统的动态行为及其对过渡到不良状态的敏感性。由于相互作用的不同,大量参数和不同的初始条件,研究非常困难,现有方法只能应用于连续时间系统。在这里,我们提出了一个分析框架,将n维离散时间系统折叠成S+1维流形,作为S << N的有效参数的函数。具体来说,我们提供了低维崩溃质量的定量预测。我们在各种现实世界中的复杂系统上测试我们的框架,显示其良好的性能,并正确识别与系统过渡相对应的参数空间中的区域。我们的工作提供了一种分析工具,可降低可以应用于更广泛的系统和动态的离散时间网络系统的维度。
One of the outstanding problems in complexity science and dynamical system theory is understanding the dynamic behavior of high-dimensional networked systems and their susceptibility to transitions to undesired states. Because of varied interactions, large number of parameters and different initial conditions, the study is extremely difficult and existing methods can be applied only to continuous-time systems. Here we propose an analytical framework for collapsing N-dimensional discrete-time systems into a S+1-dimensional manifold as a function of S effective parameters with S << N. Specifically, we provide a quantitative prediction of the quality of the low-dimensional collapse. We test our framework on a variety of real-world complex systems showing its good performance and correctly identify the regions in the parameter space corresponding to the system's transitions. Our work offers an analytical tool to reduce dimensionality of discrete-time networked systems that can be applied to a broader set of systems and dynamics.