论文标题

Eventnerf:单色事件相机的神经辐射场

EventNeRF: Neural Radiance Fields from a Single Colour Event Camera

论文作者

Rudnev, Viktor, Elgharib, Mohamed, Theobalt, Christian, Golyanik, Vladislav

论文摘要

异步操作的事件摄像机由于其高动态范围,消失的低运动模糊,低延迟和低数据带宽而找到了许多应用。在过去的几年中,该领域取得了显着的进步,现有的基于事件的3D重建方法恢复了场景的稀疏点云。但是,在许多情况下,这种稀疏性是一个限制因素,尤其是在计算机视觉和图形中,到目前为止尚未令人满意地解决。因此,本文提出了仅使用单个彩色事件流作为输入的3D一致,密集和逼真的新型视图综合的第一种方法。其核心是一个神经辐射场,从事件中完全以自我监督的方式训练,同时保留了彩色事件频道的原始分辨率。接下来,我们的射线采样策略是针对事件量身定制的,并允许进行数据有效的培训。在测试中,我们的方法以前所未有的质量产生RGB空间的结果。我们对几个具有挑战性的合成和真实场景进行定性和数值评估我们的方法,并表明与现有方法相比,它产生的效果更大,视觉上更具吸引力。在快速运动和低照明条件下,我们还表现出鲁棒性。我们发布新记录的数据集和我们的源代码,以促进研究字段,请参见https://4dqv.mpi-inf.mpg.de/eventnerf。

Asynchronously operating event cameras find many applications due to their high dynamic range, vanishingly low motion blur, low latency and low data bandwidth. The field saw remarkable progress during the last few years, and existing event-based 3D reconstruction approaches recover sparse point clouds of the scene. However, such sparsity is a limiting factor in many cases, especially in computer vision and graphics, that has not been addressed satisfactorily so far. Accordingly, this paper proposes the first approach for 3D-consistent, dense and photorealistic novel view synthesis using just a single colour event stream as input. At its core is a neural radiance field trained entirely in a self-supervised manner from events while preserving the original resolution of the colour event channels. Next, our ray sampling strategy is tailored to events and allows for data-efficient training. At test, our method produces results in the RGB space at unprecedented quality. We evaluate our method qualitatively and numerically on several challenging synthetic and real scenes and show that it produces significantly denser and more visually appealing renderings than the existing methods. We also demonstrate robustness in challenging scenarios with fast motion and under low lighting conditions. We release the newly recorded dataset and our source code to facilitate the research field, see https://4dqv.mpi-inf.mpg.de/EventNeRF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源