论文标题

检测相关的高斯数据库

Detecting Correlated Gaussian Databases

论文作者

K, Zeynep, Nazer, Bobak

论文摘要

本文考虑了检测两个数据库(每个数据库)是否由$ n $用户组成的问题是相关的。在零假设下,数据库是独立的。在替代假设下,在未知行排列下,这些特征在数据库之间相关。开发了一个简单的测试,以表明检测可以在$ρ^2 \ of frac {1} {d} $上方实现。对于相反,使用截断的第二钟方法来确定在大约$ρ^2 \ of frac {1} {d \ sqrt {n}} $下方的检测是不可能的。将这些结果与相应的恢复问题进行了比较,该问题的目标是解码行排列,并且先前已显示了大约$ρ^2 \ 1 -n^{ - 4/d} $的相反结合。对于某些参数选择,检测可实现性限制的效果优于此恢复相反的结合,这表明在这种情况下,检测比恢复更容易。

This paper considers the problem of detecting whether two databases, each consisting of $n$ users with $d$ Gaussian features, are correlated. Under the null hypothesis, the databases are independent. Under the alternate hypothesis, the features are correlated across databases, under an unknown row permutation. A simple test is developed to show that detection is achievable above $ρ^2 \approx \frac{1}{d}$. For the converse, the truncated second moment method is used to establish that detection is impossible below roughly $ρ^2 \approx \frac{1}{d\sqrt{n}}$. These results are compared to the corresponding recovery problem, where the goal is to decode the row permutation, and a converse bound of roughly $ρ^2 \approx 1 - n^{-4/d}$ has been previously shown. For certain choices of parameters, the detection achievability bound outperforms this recovery converse bound, demonstrating that detection can be easier than recovery in this scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源