论文标题
DialogId:一个对话说明数据集,用于提高在线环境中的教学效果
DialogID: A Dialogic Instruction Dataset for Improving Teaching Effectiveness in Online Environments
论文作者
论文摘要
在线对话说明是在现实世界在线教育环境中使用的一系列教学说明,以激励学生,帮助了解学习材料并建立有效的学习习惯。尽管在线学习的流行和优势,但教育技术和教育数据挖掘社区仍然缺乏缺乏大规模,高质量和良好的被宣布的教学教学数据集,以研究自动检测在线对话的计算方法,并进一步提高在线教学效果。因此,在本文中,我们提供了一个在线对话说明检测的数据集,\ textsc {dialogid},其中包含30,431个有效的对话说明。这些教学说明很好地注释分为8个类别。此外,我们还利用了普遍的预训练的语言模型(PLM),并提出一个简单而有效的对抗训练学习范式来提高对话指导检测的质量和概括。广泛的实验表明,我们的方法的表现优于多种基线方法。数据和我们的代码可用于研究目的:https://github.com/ai4ed/dialogid。
Online dialogic instructions are a set of pedagogical instructions used in real-world online educational contexts to motivate students, help understand learning materials, and build effective study habits. In spite of the popularity and advantages of online learning, the education technology and educational data mining communities still suffer from the lack of large-scale, high-quality, and well-annotated teaching instruction datasets to study computational approaches to automatically detect online dialogic instructions and further improve the online teaching effectiveness. Therefore, in this paper, we present a dataset of online dialogic instruction detection, \textsc{DialogID}, which contains 30,431 effective dialogic instructions. These teaching instructions are well annotated into 8 categories. Furthermore, we utilize the prevalent pre-trained language models (PLMs) and propose a simple yet effective adversarial training learning paradigm to improve the quality and generalization of dialogic instruction detection. Extensive experiments demonstrate that our approach outperforms a wide range of baseline methods. The data and our code are available for research purposes from: https://github.com/ai4ed/DialogID.