论文标题

增强的低能磁激励在基于Fe的超导体Fe $ _ {0.98} $ TE $ _ {0.5} $ se $ _ {0.5} $中演示了Cu诱导的定位

Enhanced low-energy magnetic excitations evidencing the Cu-induced localization in an Fe-based superconductor Fe$_{0.98}$Te$_{0.5}$Se$_{0.5}$

论文作者

Wang, Jinghui, Bao, Song, Shangguan, Yanyan, Cai, Zhengwei, Gan, Yuan, Li, Shichao, Ran, Kejing, Ma, Zhen, Winn, B. L., Christianson, A. D., Zhong, Ruidan, Li, Jun, Gu, Genda, Wen, Jinsheng

论文摘要

我们已经对最佳掺杂的fe $ _ {0.98} $ te $ _ {0.5} $ se $ _ {0.5} $和10%cu掺杂的fe $ _ {0.88} $ cu $ _ {0.1} $ _ n 0.5} $ _ {0.5} 0.5整个能量的激发范围高达300 MEV。发现CU代替Fe可以增强低能自旋激发($ \ le $ 100 MEV),尤其是在(0.5,0.5)点附近,并完整地使高能磁激发保持完整。与期望旋转1/2的铜的期望相反,稀释的磁力矩会因Fe而造成更大的自旋贡献,我们发现10%的Cu兴奋剂扩大了有效的波动时刻从2.85到3.13 $ _ {\ rm B} $/Fe,尽管没有长或短范围的磁性磁性顺序,却没有长或短范围的磁性顺序。在绝缘状态下的10%Cu掺杂样品中存在增强的磁激发表明,磁激发必须从局部矩中有一些贡献,这反映了基于铁的超导体中磁性的双重性质。我们将替代效应归因于Cu掺杂剂诱导的巡回电子的定位。这些结果还表明,Cu掺杂并不像刚体移位模型那样充当电子供体,而是作为定位系统的散射中心。

We have performed inelastic neutron scattering measurements on optimally-doped Fe$_{0.98}$Te$_{0.5}$Se$_{0.5}$ and 10% Cu-doped Fe$_{0.88}$Cu$_{0.1}$Te$_{0.5}$Se$_{0.5}$ to investigate the substitution effects on the spin excitations in the whole energy range up to 300 meV. It is found that substitution of Cu for Fe enhances the low-energy spin excitations ($\le$ 100 meV), especially around the (0.5, 0.5) point, and leaves the high-energy magnetic excitations intact. In contrast to the expectation that Cu with spin 1/2 will dilute the magnetic moments contributed by Fe with a larger spin, we find that the 10% Cu doping enlarges the effective fluctuating moment from 2.85 to 3.13 $μ_{\rm B}$/Fe, although there is no long- or short-range magnetic order around (0.5, 0.5) and (0.5, 0). The presence of enhanced magnetic excitations in the 10% Cu doped sample which is in the insulating state indicates that the magnetic excitations must have some contributions from the local moments, reflecting the dual nature of the magnetism in iron-based superconductors. We attribute the substitution effects to the localization of the itinerant electrons induced by Cu dopants. These results also indicate that the Cu doping does not act as electron donor as in a rigid-band shift model, but more as scattering centers that localize the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源