论文标题
所有连接的有限图的家庭限制与汇合的表达式
The projective Fra\"ıssé limit of the family of all connected finite graphs with confluent epimorphisms
论文作者
论文摘要
我们调查了“有限连接的图形”的投影范围,其汇总表皮和连续体作为其投射fra \“ısssé极限的拓扑实现。这个连续性以前是未知的。我们证明它是不可分解的,但在遗传上不可分解的,一维,凯利,尖锐的自塑形,但不是同质的。它是遗传性的,每个点都是康托粉丝的顶部。此外,可以嵌入通用电磁阀,通用伪六杆和伪弧。
We investigate the projective Fra\"ıssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fra\"ıssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.