论文标题
用于聚类PACS存储库的深嵌入聚类算法
Deep embedded clustering algorithm for clustering PACS repositories
论文作者
论文摘要
由于获取和存储标准的差异,从多个来源创建大量的医学放射学图像数据集可能具有挑战性。控制和/或评估图像选择过程的一种可能方法是通过医学图像聚类。但是,这需要一种有效的方法来学习潜在图像表示。在本文中,我们仅使用像素数据解决了完全不受欢迎的医学图像聚类的问题。我们测试了几种现代方法的性能,这些方法构建在卷积自动编码器(CAE)的基础上 - 卷积深层嵌入式聚类(CDEC)和卷积改进的深层嵌入式聚类(CIDEC),以及基于预设特征提取的三种方法 - 置换梯度(HOG)的直方图(HOG)(HOG),本地Bariny Batter(lb Pric)(LBP)和PCANTAL(LBP)。 CDEC和CIDEC是端到端聚类解决方案,涉及同时学习潜在表示和聚类分配,而其余方法则依赖于固定嵌入的K-Means聚类。我们在30,000张图像上训练模型,并使用由8,000张图像组成的单独测试集进行测试。我们从临床医院中心Rijeka的PACS存储库档案库中取样了数据。为了进行评估,我们在两个目标参数上使用轮廓分数,同质性评分和归一化互信息(NMI),与常见发生的DICOM标签紧密相关 - 模态和解剖区域(调整后的BodyPartArtArtAxamed标签)。 CIDEC相对于解剖区域的NMI得分为0.473,而CDEC相对于TAG模式,NMI得分为0.645,两者都优于其他常用的特征描述符。
Creating large datasets of medical radiology images from several sources can be challenging because of the differences in the acquisition and storage standards. One possible way of controlling and/or assessing the image selection process is through medical image clustering. This, however, requires an efficient method for learning latent image representations. In this paper, we tackle the problem of fully-unsupervised clustering of medical images using pixel data only. We test the performance of several contemporary approaches, built on top of a convolutional autoencoder (CAE) - convolutional deep embedded clustering (CDEC) and convolutional improved deep embedded clustering (CIDEC) - and three approaches based on preset feature extraction - histogram of oriented gradients (HOG), local binary pattern (LBP) and principal component analysis (PCA). CDEC and CIDEC are end-to-end clustering solutions, involving simultaneous learning of latent representations and clustering assignments, whereas the remaining approaches rely on k-means clustering from fixed embeddings. We train the models on 30,000 images, and test them using a separate test set consisting of 8,000 images. We sampled the data from the PACS repository archive of the Clinical Hospital Centre Rijeka. For evaluation, we use silhouette score, homogeneity score and normalised mutual information (NMI) on two target parameters, closely associated with commonly occurring DICOM tags - Modality and anatomical region (adjusted BodyPartExamined tag). CIDEC attains an NMI score of 0.473 with respect to anatomical region, and CDEC attains an NMI score of 0.645 with respect to the tag Modality - both outperforming other commonly used feature descriptors.