论文标题

SCAI:具有自适应推断的光谱数据分类框架

SCAI: A Spectral data Classification framework with Adaptive Inference for the IoT platform

论文作者

Sun, Yundong, Zhu, Dongjie, Du, Haiwen, Wang, Yansong, Tian, Zhaoshuo

论文摘要

目前,这是一个热门的研究主题,可以在深度学习和物联网技术的帮助下实现大量光谱数据的准确,高效和实时识别。深度神经网络在光谱分析中起着关键作用。但是,更深层模型的推断是以静态方式进行的,不能根据设备进行调整。并非所有样本都需要分配所有计算以实现自信的预测,这阻碍了最大化整体性能。为了解决上述问题,我们提出了一个具有自适应推理的光谱数据分类框架。具体而言,要为不同样本分配不同的计算,同时更好地利用不同设备之间的协作,我们利用早期外观体系结构,将中间分类器放置在体系结构的不同深度,并在预测置信度达到预设阈值时输出结果。我们提出了一个自我鉴定学习的训练范式,最深的分类器对浅层进行了软监督,以最大程度地提高其性能和训练速度。同时,为了减轻早期外观范式中中间分类器的位置和数字设置的性能脆弱性,我们提出了一个自适应的残留网络。它可以在不同曲线位置调整每个块中每个块中的层数,因此它可以专注于曲线的重要位置(例如:拉曼峰),并根据任务性能和计算资源准确地分配适当的计算预算。据我们所知,本文是第一次尝试通过自适应推断在物联网平台下进行光谱检测来进行优化。我们进行了许多实验,实验结果表明,与现有方法相比,我们提出的方法可以以更低的计算预算实现更高的性能。

Currently, it is a hot research topic to realize accurate, efficient, and real-time identification of massive spectral data with the help of deep learning and IoT technology. Deep neural networks played a key role in spectral analysis. However, the inference of deeper models is performed in a static manner, and cannot be adjusted according to the device. Not all samples need to allocate all computation to reach confident prediction, which hinders maximizing the overall performance. To address the above issues, we propose a Spectral data Classification framework with Adaptive Inference. Specifically, to allocate different computations for different samples while better exploiting the collaboration among different devices, we leverage Early-exit architecture, place intermediate classifiers at different depths of the architecture, and the model outputs the results when the prediction confidence reaches a preset threshold. We propose a training paradigm of self-distillation learning, the deepest classifier performs soft supervision on the shallow ones to maximize their performance and training speed. At the same time, to mitigate the vulnerability of performance to the location and number settings of intermediate classifiers in the Early-exit paradigm, we propose a Position-Adaptive residual network. It can adjust the number of layers in each block at different curve positions, so it can focus on important positions of the curve (e.g.: Raman peak), and accurately allocate the appropriate computational budget based on task performance and computing resources. To the best of our knowledge, this paper is the first attempt to conduct optimization by adaptive inference for spectral detection under the IoT platform. We conducted many experiments, the experimental results show that our proposed method can achieve higher performance with less computational budget than existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源