论文标题

大型位移和变形的运动估计

Motion Estimation for Large Displacements and Deformations

论文作者

Chen, Qiao, Poullis, Charalambos

论文摘要

大型位移光流是许多计算机视觉任务不可或缺的一部分。基于粗到细节方案的变分光流技术插值稀疏匹配,并在局部优化以颜色,梯度和光滑度来调节的能量模型,使其对稀疏匹配,变形和任意大型位移中的噪声敏感。本文解决了此问题并提出了混合流,这是一个大型位移和变形的变分运动估计框架。在图像对上执行多尺度混合匹配方法。通过按照群集的上下文描述符将根据像素根据其特征描述符分类而形成的粗尺度群集。我们在每个匹配的一对粗尺度簇中包含的精细尺度超级像素上应用多尺度的图形匹配。使用局部特征匹配将无法进一步细分的小簇匹配。这些初始匹配在一起形成了流,这是由边缘固定插值和变化的细化而传播的。我们的方法不需要训练,并且由于现场运动而引起的实质性位移以及刚性和非韧性转换是强大的,因此它非常适合大规模图像(例如宽面积运动图像(WAMI))。更值得注意的是,混合流在代表感知组的任意拓扑的有向图上起作用,从而在存在明显变形的情况下改善运动估计。我们展示了混合流的优越性能,在两个基准数据集上具有最先进的变量技术,并通过最先进的基于深度学习的技术报告了可比的结果。

Large displacement optical flow is an integral part of many computer vision tasks. Variational optical flow techniques based on a coarse-to-fine scheme interpolate sparse matches and locally optimize an energy model conditioned on colour, gradient and smoothness, making them sensitive to noise in the sparse matches, deformations, and arbitrarily large displacements. This paper addresses this problem and presents HybridFlow, a variational motion estimation framework for large displacements and deformations. A multi-scale hybrid matching approach is performed on the image pairs. Coarse-scale clusters formed by classifying pixels according to their feature descriptors are matched using the clusters' context descriptors. We apply a multi-scale graph matching on the finer-scale superpixels contained within each matched pair of coarse-scale clusters. Small clusters that cannot be further subdivided are matched using localized feature matching. Together, these initial matches form the flow, which is propagated by an edge-preserving interpolation and variational refinement. Our approach does not require training and is robust to substantial displacements and rigid and non-rigid transformations due to motion in the scene, making it ideal for large-scale imagery such as Wide-Area Motion Imagery (WAMI). More notably, HybridFlow works on directed graphs of arbitrary topology representing perceptual groups, which improves motion estimation in the presence of significant deformations. We demonstrate HybridFlow's superior performance to state-of-the-art variational techniques on two benchmark datasets and report comparable results with state-of-the-art deep-learning-based techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源