论文标题

严格的日志性超级划分

Strict Log-Subadditivity for Overpartition Rank

论文作者

Zhang, Helen W. J., Zhong, Ying

论文摘要

Bessenrodt和Ono最初发现了分区功能的严格日志 - $ P(n)$,即$ p(a+b)<p(a)<p(a)p(a)p(b)$ for $ a,b> 1 $和$ a+a+a+a+b> 9 $。事实证明,许多其他重要的分区统计数据也具有类似的特性。 LoveJoy从$ Q $ Series的角度来看,将过度分区作为Dyson等级的类似物。令$ \ Overline {n}(a,c,n)$表示等级为$ a $ a $ modulo $ c $的过度分区的数量。 Ciolan计算了$ \ Overline {n}(a,c,n)$的渐近公式,并表明$ \ overline {n}(a,c,c,n)> \ overline {n}(n}(b,c,c,n)$ for $ c \ geq7 $和$ n $足够大。在本文中,我们通过使用CIOLAN的渐近学来得出每个$ c \ geq3 $的上限{n}(a,c,n)$的上限和下限。因此,我们建立了$ \ overline {n}(a,c,n)$类似于分区函数$ p(n)$的严格日志添加性。

Bessenrodt and Ono initially found the strict log-subadditivity of partition function $p(n)$, that is, $p(a+b)< p(a)p(b)$ for $a,b>1$ and $a+b>9$. Many other important statistics of partitions are proved to enjoy similar properties. Lovejoy introduced the overpartition rank as an analog of Dyson's rank for partitions from the $q$-series perspective. Let $\overline{N}(a,c,n)$ denote the number of overpartitions with rank congruent to $a$ modulo $c$. Ciolan computed the asymptotic formula of $\overline{N}(a,c,n)$ and showed that $\overline{N}(a, c, n) > \overline{N}(b, c, n)$ for $c\geq7$ and $n$ large enough. In this paper, we derive an upper bound and a lower bound of $\overline{N}(a,c,n)$ for each $c\geq3$ by using the asymptotics of Ciolan. Consequently, we establish the strict log-subadditivity of $\overline{N}(a,c,n)$ analogous to the partition function $p(n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源